Regulation of Fas ligand expression by vascular endothelial growth factor in endometrial stromal cells in vitro.

نویسندگان

  • M Berkkanoglu
  • O Guzeloglu-Kayisli
  • U A Kayisli
  • B F Selam
  • A Arici
چکیده

When Fas ligand (FasL) interacts with the Fas receptor, it induces apoptosis through autocrine and/or paracrine signalling. Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine. VEGF plays a role during remodelling of the endometrium following menstruation. We hypothesized that, by regulating FasL expression, VEGF may play a role in endometrial stromal cell survival by decreasing autocrine apoptotic signalling. We aimed to determine the expression of FasL in cultured endometrial stromal cells and its modulation by VEGF. VEGF induced a decrease in both FasL-positive cell number and FasL intensity as determined by immunocytochemistry and western blot respectively (P < 0.05). These effects of VEGF were observed in a concentration-dependent manner (10-42%; P < 0.05). Anti-VEGF neutralizing antibody alone resulted in an increase in the FasL expression. When combined with VEGF, anti-VEGF reversed the VEGF-induced decrease in FasL level up to 100% (P < 0.05). In addition, western blot analysis showed that FasL expression in endometrial stromal cells demonstrated a cyclic change every 12 h during 48 h of incubation. These results suggest that down-regulation of FasL by VEGF may affect endometrial stromal cell survival in an autocrine or paracrine manner. The decrease in FasL level may be due to a stimulation of its degradation. Our results show that FasL in endometrial stromal cells in culture has a cyclic expression model, suggesting that there may be a regulation at the translation level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage derived growth factors modulate Fas ligand expression in cultured endometrial stromal cells: a role in endometriosis.

Fas-Fas ligand (FasL) interactions play a significant role in the immune privilege status of certain cell populations, and several cytokines and growth factors can modulate their expression. When a FasL-expressing cell binds a Fas-bearing immune cell, it triggers its death by apoptosis. In this study, we demonstrate that normal human endometrial epithelial but not stromal cells express FasL. Mo...

متن کامل

Patterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells

Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...

متن کامل

Angiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells

Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...

متن کامل

Effect of different concentrations of leukemia inhibitory factor on gene expression of vascular endothelial growth factor-A in trophoblast Tumor Cell Line

Background: Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokinesparticipating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelialfactor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aimof this study was to evaluate th...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2004